S-Nitrosohemoglobin is unstable in the reductive erythrocyte environment and lacks O2/NO-linked allosteric function.
نویسندگان
چکیده
Our previous results run counter to the hypothesis that S-nitrosohemoglobin (SNO-Hb) serves as an in vivo reservoir for NO from which NO release is allosterically linked to oxygen release. We show here that SNO-Hb undergoes reductive decomposition in erythrocytes, whereas it is stable in purified solutions and in erythrocyte lysates treated with an oxidant such as ferricyanide. Using an extensively validated methodology that eliminates background nitrite and stabilizes erythrocyte S-nitrosothiols, we find the levels of SNO-Hb in the basal human circulation, including red cell membrane fractions, were 46 +/- 17 nm in human arterial erythrocytes and 69 +/- 11 nm in venous erythrocytes, incompatible with the postulated reservoir function of SNO-Hb. Moreover, we performed experiments on human red blood cells in which we elevated the levels of SNO-Hb to 10,000 times the normal in vivo levels. The elevated levels of intra-erythrocytic SNO-Hb fell rapidly, independent of oxygen tension and hemoglobin saturation. Most of the NO released during this process was oxidized to nitrate. A fraction (25%) was exported as S-nitrosothiol, but this fraction was not increased at low oxygen tensions that favor the deoxy (T-state) conformation of Hb. Results of these studies show that, within the redox-active erythrocyte environment, the beta-globin cysteine 93 is maintained in a reduced state, necessary for normal oxygen affinity, and incapable of oxygen-linked NO storage and delivery.
منابع مشابه
Effects of nitroglycerin on erythrocyte rheology and oxygen unloading: novel role of S-nitrosohemoglobin in relieving myocardial ischemia.
BACKGROUND We hypothesized that nitroglycerin improves O2 delivery to ischemic tissue by altering erythrocyte rheology and O2 unloading through an increase in bioactive nitric oxide (NO) content. METHODS AND RESULTS Twelve dogs with resting flow-reducing single-vessel stenosis were studied at rest and during intracoronary infusion of nitroglycerin (0.3 to 0.6 microg.kg(-1).min(-1)). Half the ...
متن کاملRed Blood Cell Nitric Oxide as an Endocrine Vasoregulator
Background—A respiratory cycle for nitric oxide (NO) would involve the formation of vasoactive metabolites between NO and hemoglobin during pulmonary oxygenation. We investigated the role of these metabolites in hypoxic tissue in vitro and in vivo in healthy subjects and patients with congestive heart failure (CHF). Methods and Results—We investigated the capacity for red blood cells (RBCs) to ...
متن کاملEssential role of hemoglobin beta-93-cysteine in posthypoxia facilitation of breathing in conscious mice.
When erythrocyte hemoglobin (Hb) is fully saturated with O2, nitric oxide (NO) covalently binds to the cysteine 93 residue of the Hb β-chain (B93-CYS), forming S-nitrosohemoglobin. Binding of NO is allosterically coupled to the O2 saturation of Hb. As saturation falls, the NO group on B93-CYS is transferred to thiols in the erythrocyte, and in the plasma, forming circulating S-nitrosothiols. He...
متن کاملOxygen regulation of tumor perfusion by S-nitrosohemoglobin reveals a pressor activity of nitric oxide.
In erythrocytes, S-nitrosohemoglobin (SNO-Hb) arises from S-nitrosylation of oxygenated hemoglobin (Hb). It has been shown that SNO-Hb behaves as a nitric oxide (NO) donor at low oxygen tensions. This property, in combination with oxygen transport capacity, suggests that SNO-Hb may have unique potential to reoxygenate hypoxic tissues. The present study was designed to test the idea that the all...
متن کاملRed blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure.
BACKGROUND A respiratory cycle for nitric oxide (NO) would involve the formation of vasoactive metabolites between NO and hemoglobin during pulmonary oxygenation. We investigated the role of these metabolites in hypoxic tissue in vitro and in vivo in healthy subjects and patients with congestive heart failure (CHF). METHODS AND RESULTS We investigated the capacity for red blood cells (RBCs) t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 31 شماره
صفحات -
تاریخ انتشار 2002